Urban tramways and surface transit priority – Paris

The biggest drawback to any surface transit line is the inherent conflict at the surface with other modes: cars, bikes, pedestrians, etc. This is an inherent element of competing for the same real estate as other priorities. When space on the surface is simply overtaxed or too contested, urban transport networks can add layers – but usually with great expense. With their tramways, the French manage to blur the lines between upgraded legacy street-running tram networks and the American conception of light rail as a kind of rapid transit.

In France, transport planners work to maximize the efficiency of surface transit operations to provide cost-effective transit network expansion. Standardization and relatively low costs allow a wide range of cities  (including the Paris region) to afford investments in new services.

Two of the Paris tramways illustrate the flexibility of the mode and the opportunities for efficient surface transit: The T2, operating on a repurposed rail right of way; and the T3, the first modern tramway in the city since the 1930s.

T2 at the Belvedere station. Note the alingment within the old rail right of way; La Defense skyscrapers in the background. CC image from Wiki.

T2 at the Belvedere station. Note the alignment within the old rail right of way; La Defense skyscrapers in the background. CC image from Wiki.

Community gardening spaces in unused right of way adjacent to the Belvedere T2 station. Photo by the author.

Community gardening spaces in unused right of way adjacent to the Belvedere T2 station. Photo by the author.

The T2 Tramway makes use of old SNCF rail right of way, but uses trams to allow for surface-running extensions at both ends of the line. The old suburban rail line closed in 1993, with the replacement tram service beginning in 1997. The line has since been extended in 2009 (into Paris) and in 2012 (north of La Defense).

The line’s  regular and frequent service has proven to be popular, carrying 115,000 riders daily. After blowing the initial ridership projections out of the water (as well as the ridership for the old suburban service that ended in 1993), the offering of frequent service along the same line (4 minute peak headways) shows what a difference a solid, frequent service plan can bring. In 2003, RATP had to lengthen the platforms (to 65m) to accommodate double-length trains.

Between the dedicated, mostly grade-separated right of way, platform/train length, and train frequency, the level of service comes as close to the Paris Metro (most Metro station platforms are 75m long, save for the busiest lines and key transfer points) as you can get while remaining on the surface.

Looking across the T2 platform to a Transilien train at Puteaux. The fence forces passengers to use the faregates to get on a Transilien service. Photo by the author.

Looking across the T2 platform to a Transilien train at Puteaux. The fence forces passengers to use the faregates to get on a Transilien service. Photo by the author.

The line’s heritage as a mainline railway is on display at the Puteaux station, where a cross-platform transfer is available to the L and U Transilien services. A fence along the platform forces those wishing to transfer to use faregates, meshing the tramway’s proof of payment system with the faregates found on the Metro, RER, and many of the suburban train stations.

The 2009 extension of the T2 brought the line into Paris, proper (incidentally, connecting to the T3 at Porte de Versailles, one of the areas of Paris slated to allow taller buildings), leaving the old SNCF right of way in favor of running on city streets. True to the standards established with other tramways, the trams are always given their own, dedicated right of way (often with grass tracks, both as a nice urban design touch and as a way to keep cars and trucks out).

Paris T3, showing street section with grass tracks. Photo by the author.

Paris T3, showing street section with grass tracks. Photo by the author.

At Porte de Versailles, riders can transfer to the T3 line. The modern tramway takes advantage of wide Parisian streets. Station platforms provide ample space compared to the legacy platforms in Amsterdam; two lanes of traffic in each direction move freely; sidewalks are wide with ample space for walking. Unlike the T2, the construction of the T3 involved removing car capacity in favor of transit.

Stop spacing is fairly close by American standards, but not for Paris – 500m on average. Similar to the T2, trains operate every 4 minutes during peak hours. Compared to the previous bus service along the route (averaging 15 kph), RATP claims the T3 is faster, averaging 19-20 kph (about 12.5 miles per hour). By comparison, almost no WMATA bus routes in the core of DC get above 10 mph average in the AM rush hours, and the PM rush is worse.

Not only does the T3 represent an improvement in speed and reliability over previous bus services, but it also adds capacity over bus. Like the T2, the T3 is also popular, exceeding ridership estimates. Riders strain the system, and operating along the surface, adjacent to traffic presents risks to speed and schedule adherence, despite signal priority for transit. Perhaps fewer stations with wider spacing would provide for faster average speed, but aside from that kind of change, it’s hard to see how you could squeeze more out of surface transit than the T3.

At the same time, the T2 shows the flexibility of tramways, allowing for mixed operation on surface streets as well as dedicated, grade-separated right of way. Where well-placed existing right of way (like the T2) isn’t available, there is also the option of pursuing a Premetro strategy, taking advantage of incremental implementation of full grade separation. The same vehicles can be used in both schemes; allowing flexibility not usually available to a Metro system or suburban rail.